Chapter 16-One-way Analysis of Variance

I am assuming that most people would prefer to see the solutions to these problems as computer printout. (I will use R and SPSS for consistency.)
16.1 Analysis of Eysenck's data:
a) The analysis of variance:

Variable RECALL - -- O N E W A Y ----							
By Variable GROUP Group Membership							
Analysis of Variance							
Source				Mean Squares		F	F
		D.F.	Squares			Ratio	Prob.
Between Groups		1	266.4500	266.4500		25.2294	. 0001
Within Groups		18	190.1000	10.5611			
Total		19	456.5500				
Group	Count	Standard Standard					
		Mean	Deviation	Error			
Grp 1	10	19.3000	2.6687	. 8439	17.	3909 TO	21.2091
Grp 2	10	12.0000	- 3.7417	1.1832		3234 TO	14.6766
Total	20	15.6500	04.9019	1.0961	13.	3558 TO	17.9442

b) t test

Notice that if you square the t value of 5.02 you obtain 25.20 , which is the same as the F in the analysis of variance. Notice also that the analysis of variance procedure produces confidence limits on the means, whereas the t procedure produces confidence limits on the difference of means.
16.3 Expanding on Exercise 16.2:
a) Combine the Low groups together and the High groups together:

Here we have compared recall under conditions of Low versus High processing, and can conclude that higher levels of processing lead to significantly better recall.
b) The answer is still a bit difficult to interpret because both groups contain both younger and older subjects, and it is possible that the effect holds for one age group but not for the other.
d) When we assume equal variances $t^{2}=4.34^{2}=18.84$. When we assume unequal variances $t^{2}=4.27^{2}=18.23$. Within rounding error the F corresponding to the t with pooled variances (the t assuming equal variances) is equal to the F from the analysis of variance.

You could point out to students that the analysis of variance always uses the equivalent of a pooled variance term unless you go in with your calculator and deliberately calculate it in some other way.
$16.5 \eta^{2}$ and ω^{2} for the data in Exercise 16.1:

$$
\begin{aligned}
& \mathrm{SS}_{\text {group }}=266.45 \\
& \mathrm{SS}_{\text {total }}=456.55 \\
& \mathrm{MS}_{\text {error }}=10.564 \\
& k=2 \\
& \eta^{2}=\frac{S S_{\text {group }}}{S S_{\text {total }}}=\frac{266.45}{456.55}=.58 \\
& \omega^{2}=\frac{S S_{\text {group }}-(k-1) M S_{\text {error }}}{S S_{\text {total }}+M S_{\text {error }}} \\
& =\frac{266.45-(2-1) 10.564}{456.55+10.564}=\frac{255.886}{467.114}=.55
\end{aligned}
$$

Here is another illustration that η^{2} and ω^{2} are often quite close. You could start a discussion from the fact that there are several exercises that require students to compute magnitude of effect measures, and those measures vary substantially from one experiment to another. This could lead to a discussion of when a measure, such as η^{2}, is too low to be meaningful or two high to be anything but trivial.
16.7 Foa et al. (1991) study:

Group	\boldsymbol{n}	Mean	S.D.	Total	Variance
SIT	14	11.07	3.95	155	15.6025
PE	10	15.40	11.12	154	123.6544
SC	11	18.09	7.13	199	50.8369
WL	10	19.50	7.11	195	50.5521
Total	45	15.622		703	

$\bar{X} . .=\frac{703}{45}=15.622$

$$
\begin{aligned}
S S_{\text {treat }} & =\sum n_{j}\left(\bar{X}_{j}-\bar{X} . .\right)^{2} \\
& =14(11.07-15.622)^{2}+10(15.40-15.622)^{2}+11(18.09-15.622)^{2}+10(19.50-15.622)^{2} \\
& =507.840 \\
M S_{\text {error }} & =\frac{\sum\left(n_{i}-1\right) s_{i}^{2}}{\sum\left(n_{i}-1\right)} \\
& =\frac{13(15.6025)+9(123.6544)+10(50.8369)+9(50.5521)}{41} \\
& =55.587 \\
S S_{\text {error }} & =\left[\Sigma\left(n_{1}-1\right)\right] M S_{\text {error }}=41 * 55.587=2279.067
\end{aligned}
$$

From these values we can fill in the complete summary table and compute the F value.

Source	$\boldsymbol{d} \boldsymbol{f}$	$\boldsymbol{S S}$	$\boldsymbol{M S}$	\boldsymbol{F}
Treatment	3	507.840	169.280	3.04
Error	41	2279.067	55.587	
Total	44	2786.907		

$\left[F_{.05}(3,41)=2.84\right]$ We can reject the null hypothesis and conclude that there are significant differences between groups. Some treatments are more effective than others.
b)

c) It would appear that the more interventionist treatments lead to fewer symptoms than the less interventionist ones, although we would have to run multiple comparisons to tell exactly which groups are different from which other groups.

You might remind students that these are the results of an actual experiment. Some forms of therapy are better than others, and are better than a no-treatment control. We sometimes lose sight of that.

16.9 R code for Ex16.7

This code generates random data, so the means and standard deviations will not be exact. But the set.seed(3086) should produce a result that is significant.

```
# Exercise 16.9
# Generate data
set.seed(3086)
ST <- round(rnorm(14, 11.07, 3.95), digits = 2)
PE <- round(rnorm(10, 15.40, 11.12), digits = 2)
SC <- round(rnorm(11, 18.09, 7.13), digits = 2)
WL <- round(rnorm(10, 19.5, 7.11), digits = 2)
dv <- c(ST, PE, SC, WL)
group<- factor(a<- rep(c(1,2,3,4), c(14,10, 11,10)))
model <- lm(dv ~ group)
anova(model)
```

16.11 If the sample sizes in Exercise 16.7 were twice as large, that would double the $\mathrm{SS}_{\text {treat }}$ and $\mathrm{MS}_{\text {treat. }}$. However it would have no effect on $\mathrm{MS}_{\text {error }}$, which is simply the average of the group variances. The result would be that the F value would be doubled.

16.13 R code for analysis of Exercise 16.2

```
#Ex16.13
data <- read.table("https://www.uvm.edu/~dhowell/fundamentals9/DataFiles/
    Tab16-1.dat", header = TRUE)
attach(data)
group <- factor(group) # IMPORTANT! Specify that group is a factor
model1 <- lm(dv ~ group) # Calculate the linear model of dv predicted from
group
anova(model1)
16.13 Effect size for tests in Exercise 16.10.
```

16.15 It only makes sense to calculate an effect size for significant comparisons in this study, so we will deal with SIT vs SC.

$$
\hat{d}=\frac{\bar{X}_{S C}-\bar{X}_{S I T}}{\sqrt{M S_{\text {error }}}}=\frac{18.09-11.07}{\sqrt{55.579}}=\frac{7.02}{7.455}=0.94
$$

The SIT group is nearly a full standard deviation lower in symptoms when compared to the SC group, which is a control group.
16.17 ANOVA on GPAs for the ADDSC data:

Variable GPA						
By Variable Group						
Source D.F.			Sum of	Mean	F	F
			Squares	Squares	Ratio	Prob.
Between Groups		s 2	22.5004	11.2502	22.7362	. 0000
Within Groups		85	42.0591	. 4948		
Total		87	64.5595			
			Standard	Standard		
Group	Count	Mean	Deviation	Error 9	95 Pct Conf	Int for Mean
Grp 1	14	3.2536	. 5209	. 1392	2.9528 TO	3.5543
Grp 2	49	2.5920	. 6936	. 0991	2.3928 TO	2.7913
Grp 3	25	1.7436	. 8020	. 1604	1.4125 TO	2.0747
Total	88	2.4563	. 8614	. $0918 \quad 2$	2.2737 TO	2.6388

Using R

```
Analysis of Variance Table
Response: GPA
    Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
grp 2 22.500 11.2502 22.736 1.232e-08 ***
Residuals }8542.0590.494
```

Signif. codes: $0^{\text {'***' } 0.001 ~ ' * * ' ~} 0.01^{\prime * \prime} 0.05^{\prime}$.' $0.1^{\text {' }}$ ' 1

There is a significant difference between the groups, telling us that there is a relationship between ADDSC score in elementary school and the GPA the student has in 9th grade. From the means it is clear that the GPA declines as the ADDSC score increases.

These are real data, and they tell us that a teacher in elementary school can already pick out those students who will do well and badly in high school. I have always found these results depressing and worrisome, even though psychologists are supposed to like to be able to predict. There are some things I wish weren't so predictable.
16.19 Analysis of Darley and Latané data:

Group	\boldsymbol{n}	Mean	Total
1	13	0.87	11.31
2	26	0.72	18.72
3	13	0.51	6.63
Total	52	36.66	
$S S_{\text {treat }}$	$=\Sigma n_{j}\left(\bar{X}_{j}-\bar{X}_{. .}\right)^{2}$		
	$=13(0.87-0.705)^{2}+26(0.72-0.705)^{2}+13(0.51-0.705)^{2}$		
	$=0.8541$		
$M S_{\text {error }}$	$=0.053$	$($ given in text $)$	
$S S_{\text {error }}$	$=\left[\Sigma\left(n_{1}-1\right)\right] M S_{\text {error }}=49 * 0.053=2.597$		

From these values we can fill in the complete summary table and compute the F value.

Source	$\boldsymbol{d} \boldsymbol{f}$	$\boldsymbol{S S}$	$\boldsymbol{M S}$	\boldsymbol{F}
Treatment	2	0.854	0.427	8.06
Error	49	2.597	0.053	
Total	51	3.451		

$\left[F_{.05}(2,49)=3.18\right]$ We can reject the null hypothesis and conclude that subjects are less likely to summon help quickly if there are other bystanders around.

16.21 Bonferroni test on data in Exercise 16.2:

Both of these comparisons will be made using t tests. The means are given in Exercise 16.15 above.

$$
t=\frac{\bar{X}_{i}-\bar{X}_{j}}{\sqrt{\frac{M S_{\text {error }}}{n_{i}}+\frac{M S_{\text {error }}}{n_{j}}}}
$$

For Young/Low versus Old/Low:

$$
t=\frac{6.5-7.0}{\sqrt{\frac{6.6278}{10}+\frac{6.6278}{10}}}=\frac{-0.5}{1.151}=-0.434
$$

For Young/High versus Old/High:

$$
t=\frac{19.3-12.0}{\sqrt{\frac{6.6278}{10}+\frac{6.6278}{10}}}=\frac{7.3}{1.151}=6.34
$$

For $36 d f$ for error and for 2 comparisons at a familywise error rate of $\alpha=.05$, the critical value of $t=2.34$. There is clearly not a significant difference between young and old subjects on tasks requiring little cognitive processing, but there is a significant difference for tasks requiring substantial cognitive processing. The probability that at least one of these statements represents a Type I error is at most .05 .

It is worth pointing out to students that when we are using $\mathrm{MS}_{\text {error }}$ as our variance estimate, and have equal sample sizes, the computations are very simple because we only need to calculate the denominator once.
16.23 Effect size for WL versus SIT

$$
\hat{d}=\frac{\bar{X}_{W L}-\bar{X}_{S I T}}{s_{W L}}=\frac{19.50-11.07}{7.11}=\frac{8.43}{7.11}=1.18
$$

The two groups differ by over a standard deviation.
16.25 Spilich et al. data on a cognitive task:

Variable ERRORS							
By Variable		SMOKEGRP					
		Analysis of Variance					
Source		Sum of		Mean		F	
Betwee	Groups	2	2643.3	7781321	. 6889	4.7444	. 0139
Within	roups	42	11700.4	000278	. 5810		
Total		44	14343.7	778			
			Standard	Standard			
Group	Count	Mean	Deviation	Error	95 Pct Conf	Int for	Mean
Grp 1	15	28.8667	14.6866	3.7921	20.7335	T0 36	9998
Grp 2	15	39.9333	20.1334	5.1984	28.7838	T0 51	. 0828
Grp 3	15	47.5333	14.6525	3.7833	39.4191	T0 55	6476
Total	45	38.7778	18.0553	2.6915	33.3534	T0 44	2022

Here we have a task that involves more cognitive involvement, and it does show a difference due to smoking condition. The non-smokers performed with fewer errors than the other two groups, although we will need to wait until the next exercise to see the multiple comparisons.
16.27 Spilich et al. data on driving simulation:

Variable ERRORS						
By Variable	SMOKEGRP					
	Analysis of Variance					
		Sum of	Mean		F	F
Source	D.F.	Squares	Squares		Ratio	Prob.
Between Groups	2	437.6444	218.8222		9.2584	. 0005
Within Groups	42	992.6667	23.6349			
Total	44	1430.3111				
		Standard	Standard			
Group Count	Mean	Deviation	Error 95	Pct Con	f Int	for Mean
Grp 115	2.3333	2.2887	. 5909	1.0659	T0	3.6008
Grp 215	6.8000	5.4406	1.4048	3.7871	T0	9.8129
Grp 315	9.9333	6.0056	1.5506	6.6076	T0	13.2591
Total 45	6.3556	5.7015	. 8499	4.6426	T0	8.0685

Here we have a case in which the active smokers again performed worse than the nonsmokers, and the differences are significant.

16.29 Attractiveness of faces

a) The research hypothesis would be the hypothesis that faces averaged over more photographs would be judged more attractive than faces averaged over fewer photographs.
b) Data analysis

Descriptives								
ATTRACT								
					$\begin{array}{r} 95 \% \text { Confiden } \\ \text { Me } \\ \hline \end{array}$	interval for		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1.00	6	2.60467	. 431353	. 176099	2.15199	3.05734	2.201	3.380
2.00	6	2.64500	. 657059	. 268243	1.95546	3.33454	1.893	3.644
3.00	6	2.89000	. 447100	. 182528	2.42080	3.35920	2.118	3.422
4.00	6	3.18500	. 208053	. 084937	2.96666	3.40334	2.860	3.505
5.00	6	3.26000	. 068118	. 027809	3.18852	3.33148	3.169	3.357
Total	30	2.91693	. 473378	. 086427	2.74017	3.09370	1.893	3.644

ANOVA
ATTRACT

	Sum of Squares	df	Mean Square	F	Siq.
Between Groups	2.170	4	.543	3.134	.032
Within Groups	4.328	25	.173		
Total	6.499	29			

c) Conclusions

The group means are significantly different. From the descriptive statistics we can see that the means consistently rise as we increase the number of faces over which the composite was created.

16.31 Analysis EX. 27 using R

```
data16.27<-
read.table("http://www.uvm.edu/~dhowell/fundamentals9/DataFiles/Ex16-
25.dat", header = TRUE)
attach(data16.27)
Smkgrp <- factor(Smkgrp)
```

```
model2 <- lm(Errors ~ Smkgrp)
anova(model2)
```

Analysis of Variance Table
Response: Errors
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{llllll}\text { Smkgrp } & 2 & 437.64 & 218.822 & 9.2584 & 0.0004665 \text { *** }\end{array}$
Residuals $42 \quad 992.67 \quad 23.635$
16.32 Probability value for Ex16.31
prob $<-1-\operatorname{pf}(9.258$, df1 $=2$, df2 $=42$)
prob
[1] 0.000466617

